Curvature of random walks and random polygons in confinement
نویسندگان
چکیده
The purpose of this paper is to study the curvature of equilateral random walks and polygons that are confined in a sphere. Curvature is one of several basic geometric properties that can be used to describe random walks and polygons. We show that confinement affects curvature quite strongly, and in the limit case where the confinement diameter equals the edge length the unconfined expected curvature value doubles from π/2 to π. To study curvature a simple model of an equilateral random walk in spherical confinement in dimensions two and three is introduced. For this simple model we derive explicit integral expressions for the expected value of the total curvature in both dimensions. These expressions are functions that depend only on the radius R of the confinement sphere. We then show that the values obtained by numeric integration of these expressions agrees with numerical average curvature estimates obtained from simulations of random walks. Finally, we compare the confinement effect on curvature of random walks with random polygons. Curvature of random walks and random polygons in confinement 2
منابع مشابه
The linking number and the writhe of uniform random walks and polygons in confined spaces
Random walks and polygons are used to model polymers. In this paper we consider the extension of writhe, self-linking number and linking number to open chains. We then study the average writhe, self-linking and linking number of random walks and polygons over the space of configurations as a function of their length. We show that the mean squared linking number, the mean squared writhe and the ...
متن کاملA PRELUDE TO THE THEORY OF RANDOM WALKS IN RANDOM ENVIRONMENTS
A random walk on a lattice is one of the most fundamental models in probability theory. When the random walk is inhomogenous and its inhomogeniety comes from an ergodic stationary process, the walk is called a random walk in a random environment (RWRE). The basic questions such as the law of large numbers (LLN), the central limit theorem (CLT), and the large deviation principle (LDP) are ...
متن کاملScaling of the average crossing number in equilateral random walks, knots and proteins
We compare here the scaling behaviour of the mean average crossing number 〈ACN〉 of equilateral random walks in linear and closed form with the corresponding scaling observed in natural protein trajectories. We have shown recently that the scaling of 〈ACN〉 of equilateral random walks of length n follows the relation 〈ACN〉 = 3 16 n ln n + bn and that a similar result holds for equilateral random ...
متن کاملGenerating equilateral random polygons in confinement
One challenging problem in biology is to understand the mechanism of DNA packing in a confined volume such as a cell. It is known that confined circular DNA is often knotted and hence the topology of the extracted (and relaxed) circular DNA can be used as a probe of the DNA packing mechanism. However, in order to properly estimate the topological properties of the confined circular DNA structur...
متن کاملThe length scale of 3-space knots, ephemeral knots, and slipknots in random walks
The probability that a random walk or polygon in the 3-space or in the simple cubic lattice contains a small knot, an ephemeral knot, or a slipknot goes to one as the length goes to infinity. The probability that a polygon or walk contains a “global” knot also goes to one as the length goes to infinity. What immerges is a highly complex picture of the length scale of knotting in polygons and wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013